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Abstract 

The Real Time Specification for Java (RTSJ) is an augmentation of Java 
for real time applications of various degrees of hardness. The central fea- 
tures of RTSJ are real time threads; user defined schedulers; asynchronous 
events, handlers, and control transfers; a priority inheritance based de- 
fault scheduler; non-heap memory areas such as immortal and scoped, and 
non-heap real time threads whose execution is not impeded by garbage 
collection. The Robust Software Systems group at NASA Ames Research 
Center has JAVA PATHFINDER (JPF) under development, a Java model 
checker. JPF at its core is a state exploring JVM which can examine 
alternative paths in a Java program (e.g., via backtracking) by trying all 
nondeterministic choices, including thread scheduling order. This paper 
describes our implementation of an RTSJ profile (subset) in JPF, includ- 
ing requirements, design decisions, and current implementation status. 
Two examples are analyzed: jobs on a multiprogramming operating sys- 
tem, and a complex resource contention example involving autonomous 
vehicles crossing an intersection. The utility of JPF in finding logic and 
timing errors is illustrated, and the remaining challenges in supporting 
all of RTSJ are assessed. 

1 Overview 

The possibility of using Real Time Specification for Java (RTSJ) [fJEG] 
software on future missions is under consideration at NASA, for all the 
familiar reasons: standardized (Le., platform independent) semantics, a 
rich and vigorous marketplace of implementations and tools, and the over- 
all software engineering advantages of Java as a type safe object-oriented 
programming language. RTSJ is not based on any Java core language 
extensions; rather, all its capabilities are conveyed by new classes with 
special semantics, albeit with some refinement of semantics for existing 
Java classes. This design decision in effect strikes a bargain: less run time 
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predictability, in exchange for language stability. An alternative choice 
might have been to enhance the declarative content of the language in 
the interest of stronger compile time program validation, as was done for 
example with exceptions in Java. 

The dual consequence of this design decision is inadequacy of static 
analysis for RTSJ software verification and validation, and a correspond- 
ing vital need for techniques performing dynamic analysis, e.g., model 
checking. We report here on an application of the JAVA PATHFINDER 
model checker (JPF) [VHB+03,JPFa] to RTSJ programs, focusing on 
the latter’s dynamic, time quantified behavior, with the goal of develop- 
ing a tool capable of validating RTSJ applications, ideally to the level of 
mission deployability. Our approach emphasizes the central issue of tem- 
poral correctness (e.g., threads meeting deadlines) under nondeterministic 
choices; correctness of memory usages and asynchronous control flow are 
reserved for future work. Thus we are focusing on classical correctness 
issues in real time software, rather than issues related to specialized JVM 
behavior. 

Our approach uses discrete state simulation (DSS) as a basis for mod- 
eling time. Real time threads are modeled as ordinary Java threads, con- 
strained to run one at a time, i.e., as coroutine’s. Their interactions, e.g., 
through CPU scheduling, are modeled by resource contention techniques 
familiar to DSS programming (a summary of DSS concepts is given in 
53). This permits execution of programs within our RTSJ profile on any 
Java implementation. 

However, two important capabilities are provided by analyzing (run- 
ning) RTSJ programs under JPF: (a) execution cost logging at the byte- 
code level, and (b) alternative execution path exploration via nondeter- 
ministic choice selection. Point (a) permits closing an important causality 
loop impossible on an ordinary JVM: 

thread execution cost + deadline misses -+ miss events -+ 

event handlers -+ additional thread execution cost 

Analyzing such loops is a critical requirement in the validation and 
verification of complex RTSJ applications, and is well beyond the capa- 
bility of current static analyzers. 

2 RTSJ Under JPF: Requirements and Objectives 

The first question is clearly what does it mean to model check a.n RTSJ 
program? The starting point is to view the RTSJ program as just another 



Java program (albeit with a class library with special semantics), and 
simply execute it using the model checking vigilance of JPF. This is fine, 
except that this presumes the availability of an RTSJ enabled JVM within 
JPF, which we do not have. 

Unlike a simple Java program, in which the notion of time gener- 
ally plays an insignificant role, time in RTSJ programs plays a major 
correctness role, e.g., in quantifying real time deadlines. Moreover, an 
RTSJ program (the embedded program) must be exercised within an im- 
plementation of its environment (the embedding program). In our view, 
specifying and constructing such environments are often tasks of diffi- 
culty equal to or greater than that of the embedded system. An example 
is a flight control system, where a fully accurate embedding system must 
model all the dynamics of the aircraft, as is done in a flight simulator. 
Hence ensuring that embedding code is correct is as important (or more 
so) than ensuring that the embedded code is correct. 

We adopted the following goals for model checking RTSJ under J P F :  

1. Make no changes to the J P F  implementation - clearly, a major soft- 
ware engineering win if achievable. 

2. Implement the embedding code in Java, and model check the entire 
combined system - a major validation win if possible. 

3. Deal with time through DSS modeling - a familiar and well under- 
stood technology. 

4. Implement all RTSJ thread interactions (e.g., priority based schedul- 
ing with priority inversion avoidance via priority inheritance) through 
resource contention techniques traditional to DSS. 

5. Exploit the run time cost accounting capabilities of JPF to detect 
deadline misses by real time threads, and to take appropriate actions, 
e.g., invoking overrun handlers in the embedded code. 

6. Finally, utilize the path coverage capabilities of JPF to locate bugs 
involving nondeterminacy and race conditions (e.g., trying all possible 
orders of events scheduled at equal simulation times, thereby ensuring 
the absence of instant splitting errors in the code). An important 
additional benefit is the utility of nondeterministic choice points in 
the embedding code in obtaining greater test coverage. 

3 Step 1: RTSJ in a Simulation Environment 

The first step in model checking RTSJ is to implement a profile of RTSJ 
as a set of conventional Java classes. This we have done to a first level of 
realism - several features have yet to be implemented, as discussed in $10. 



The classes in our implementation include RealtimeThread, PrioritySched- 
uler, AsyncEvent, AsyncEventHandler, OneShotTirner, PeriodicTirner and 
RelativeTime. 

The fundamental concepts of DSS (as developed in the Simula system 
of the 1970’s [BDMN73]) can be summarized as follows: 

- Individual processes (the traditional terminology - henceforth we will 
use thread) are conceptually concurrent, but in fact execute in an 
interleaved fashion as coroutines, as mentioned above. 

- A thread may be executing, activated, or passivated. 
0 An executing thread is the one currently running as a coroutine; 

An activated thread is not executing, but is scheduled to do so in 
the future at a time indicated its event notice on the simulation’s 
event list. 
A passivated thread is neither executing nor active; such threads 
are typically waiting for some condition to become true, such as 
being granted a resource. 

- Scheduling operations on threads include activate (schedule), passi- 
vate, and hold, which is a compound operation comprising activation 
at a later scheduled time time, and passivation. 

- The main thread controls the overall simulation by repeatedly de- 
queueing from the event list the event notice with the earliest event 
time, advancing the simulation clock to the time in that event no- 
tice, and notifying the associated thread to  run - until the event list 
becomes empty, or a global shutdown operation is invoked. 

Since ReaItimeThread’s are constrained to run as coroutines, the JVM 
scheduler has only one scheduling choice possible, and DSS event based 
scheduling is used in an outboard manner to orchestrate thread interleav- 
ing. For example, Fig. 1 gives our implementation of hold( RelativeTime t 

As mentioned in 52, all RealtimeThread interactions are achieved by 
contention for Resource objects, e.g., a CPU. The upshot is that no 
changes are necessary to  the schedulers of the underlying JVM or JPF 
to implement scheduling policies such as priority inheritance with FIFO 
ordering within priorities, as required by the default RTSJ scheduler. 
Since Java’s real time clock is replaced by the simulation clock, all RTSJ 
executions in this implementation are deterministic (repeatable), even if 
they use pseudo random methods to  draw numbers from probability dis- 
tributions (assuming fixed seeds) or offer the option of pseudo randomly 
selecting orders of events scheduled at identical times. 

1. 



public static void hold( RelativeTime t ) throws InterruptedException < 
RealtimeThread currentkead = (RealtimeThread)Thread.currentThreado; 
synchronized ( currentkead < 

// schedule this thread to run again after hold period 
activate( currentThread, clock.getTime0 .add(t) ) ;  

// signal main thread to perform next event in simulation cycle 
currentlkead. not if y 0 ; 

// wait for hold to be over 
currentThread.wait 0 ; 

1 
1 

Fig. 1. The implementation of hold(t). 

Nabve JVM I 

Fig. 2. RTSJ architecture under JPF. 
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Embedded code written in our RTSJ profile, together with its embed- 
ding test code using DSS facilities including simulated time, comprise an 
ordinary Java program- that can be run under any Java implementation 
(without accurate run time modeling, however). The next step is to run 
the combined program under JPF, with the following additional benefits: 

- Nondeterministic state exploration, including all orderings of events 
scheduled for the same instant, and choice points in the embedding 
code, and 

- Cost accounting, with overrun detection and invocation of appropriate 
handiers, as described beiow. 

Our adaptation of J P F  is being done in two stages. The first stage 
exploits two customization features already available in JPF: its JVM 

Step 2: Combining RTSJ and JPF 



listener interface [JPFb], and its Model Java Interface (MJI) [JPFc] (both 
features are utilized in the Control Program box in Fig. 2). 

- JVM listener interface: Logging run time (albeit idealized) for Java 
code under JPF can be done using JPF’s JVM listener interface, 
which invokes control program listener methods on various occur- 
rences, including the execution of each byte code instruction. We use 
a very simple accounting technique here, whereby each byte code is 
assigned a fixed run time in a look up table. By this technique the 
execution time (summed byte code costs) from the start to the end 
of a RealtimeThread can be accumulated. Similarly, this interface is 
used to detect execution path backtracking by the JPF JVM, so that 
path specific accounting data structures can be correspondingly back- 
tracked. 

- Model Java interface: The MJI interface permits Java code executing 
under JPF’s specialized JVM to access the underlying JVM for access 
to native facilities. This turns out to be crucial in arranging that run 
time cost logging, which executes outside the JPF JVM, is accessible 
to the RTSJ application code, which executes within the JPF JVM. 
For example, suppose an AsyncEventHandler invocation has a run time 
in excess of its stipulated limit, as observed through an MJI native 
method. This can trigger the invocation of an overrun event handler, 
which must execute within the JPF JVM. 

The second and more difficult stage of adapting JPF for RTSJ con- 
cerns features that must be implemented by JVM modifications. These 
features, which include non-heap memory areas and non-heap real time 
threads, as well as  asynchronous control transfers, are discussed in $7.1. 

. 

5 Scheduling Policies 

We now give more details on our control of scheduling by means of re- 
source contention policies. We illustrate our approach by discussion of 
five representative policies: FIFO, priority, priority inheritance, priority 
ceiling, and preemption. The first two are naive policies inviting priority 
inversion; the third is obligatory in RTS J’s default scheduler; the fourth 
is an explicit option, and the RTSJ specification is silent on the fifth. 

FIFO: This simplistic policy guarantees fairness, but ignores thread 
priority. 

Priority: Here threads waiting for a resource are selected by (fixed) 
priority first, and then by FIFO within equal priorities. Ths policy, as 
well as FIFO above, provides no defense against priority inversion. 



Priority inheritance (PI): This well known policy works by increasing 
the priority of the thread possessing a P I  resource to equal the maximum 
priority of any thread waiting for that resource (its dynamic priority). 
There are two perhaps unobvious consequences of this policy: 

1. Since a thread may possess multiple resources, its dynamic priority is 
based on the maximum priority of any thread waiting for any of the 
resources it possesses, and 

2. The priorities involved are of course dynamic priorities, so an at- 
tempted seize of a resource held by a thread waiting for another re- 
source can cause cascaded priority inheritance effects (and conversely 
for release’s). 

Priority ceiling (PC): A PC resource has a fixed priority (its ceiling 
priority) which is used to temporarily elevate the priority of any thread 
possessing it. If a thread has a dynamic priority greater than the resource’s 
ceiling priority, an attempt to seize the resource causes a PriorityCeilingEx- 
ception to be thrown (the absence of which is an important verification 
condition). 

Preemption: A resource managed under this policy does not change 
a thread’s priority when seized. A thread seizing a resource of ths kind 
only waits if the resource is currently held, and the thread’s priority is 
less than or equal to the priority of the thread holding the resource. If the 
thread’s priority is greater that that of the thread holding the resource, 
it steals the resource. 

Modeling the first four policies is straightforward DSS programming. 
The fifth policy, preemption, is a bit trickier, because possession periods 
(e.g., modeling computational activity by a thread using a CPU resource) 
can be prematurely ended when the resource is stolen by a higher pri- 
ority thread. This can be implemented by wrapping such hold method 
calls in loops that sum actual hold times, and re-exert hold invocations 
until the stipulated hold time is attained. All five policy implementations 
easily generalize to multiprocessing systems by managing pools of CPU 
resources. 

6 Applications 

We now discuss application of our RTSJ implementation in JPF to two 
example programs. The first is a simple model of a multiprogramming 
operating system (OS), while the second is a complex resource contention 
example involving autonomous cars crossing an intersection. The utility 
of JPF in finding logic and timing errors in each is illustrated. 

\ 



6.1 Mult iprogramming Operat ing System 

This example models a simple multiprogramming computer system, where 
jobs (as RealtimeThread’s) contend for a CPU, which is a resource of one 
of the five types discussed in 95. Of these, preemption is the most in- 

. teresting, because (i) it guarantees absence of priority inversion, (ii) it is 
pervasive in modern operating systems, (iii) its behavior on realistic job 
mixes defies static analysis, and consequently (iv) real time OS’S typically 
do not employ it, despite the appeal of (i). 

CPU 
FIFO 
Priority 
PC (6) 
PI 
Preempt 

Job1 (6) Job2 (5) Job3 (4) Job4 (3) Time 
3681 / 72% / 6.0 3780 / 73% / 5.0 3879 / 74% / 4.0 3979 / 74% / 3.0 3979 
1891 / 46% / 6.0 1990 / 49% / 5.0 3880 / 74% / 4.0 3979 / 74% / 3.0 3979 
1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.5 3979 / 74% / 3.7 3979 
1891 / 46% / 6.0 1990 / 49% / 5.2 3880 / 74% / 4.0 3979 / 74% / 3.2 3979 
1004 / 0% / 6.0 2008 / 49% / 5.0 3012 / 66% / 4.0 4015 / 74% / 3.0 4015 

A fixed job mix was analyzed using our RTSJ implementation in JFP, 
using CPU’s of each of our five resource types. The results are given in 
Fig. 3. In this scenario, there are four jobs that are identical in behavior 
(10 compute / wait cycles), with identical wait times between cycles. They 
are all started at  time zero. This simple stress test keeps the CPU 99% 
busy independent of its resource type (the simulation ends after the last 
job terminates). The following observations can be made of the results in 
Fig. 3: 

- The FIFO CPU gives the most fair service to the four jobs - because 
it ignores priority. 

- The Priority, Priority Ceiling, and Priority Inheritance CPUs deliver 
identical service, because the priority of a job only affects its com- 
petitive position when more than one job is waiting for the CPU, 
which does not occur in this simple scenario (an example of priority 
improving service is given in $6.2). 

- Jobs under the Preemptable CPU h i s h  strictly according to priority. 
However, the overall completion time is slightly longer, due to the 
additional scheduling overhead. 



When run under JPF  with nondeterminism turned on, there are 4! = 
24 choices for activation order at time zero for the four jobs (the statis- 
tically rare case of events scheduled at exactly the same time does not 
occur after simulation start). Priority inversion was detected in all 24 
paths under FIFO and Priority CPUs, and on no paths under Priority 
Ceiling (6), Priority Inheritance, and Preemptable CPUs. 

6.2 Intersection Crossing 

The example in 56.1 emphasizes the effect of role of resource types in 
thread scheduling. Our second application is a more complex example, 
illustrating more advanced features of our RTSJ implementation in J P F .  
This models autonomous cars transiting an intersection, where the cars 
(real time threads) can drive straight through, turn right, or turn left. 
Cars are given priorities chosen from 1 to 8. 

The intersection is modeled by four sectors (Nw, NE, SW, S E ) ,  each 
of which is a resource. For a car driving north, turning right requires 
possession of sector SE; driving straight requires SE and NE (granted 
simultaneously, to avoid deadlock; SE is released half way through), and 
turning left involves (i) seizing SE and NE together; (ii) releasing SE, (iii) 
seizing N W ,  (iv) releasing NE and NW. The net effect is a model of an 
uncontrolled intersection of two lane roads, where cars follow the common 
conventions that a car can drive straight through if the car on its left (if 
any) is not driving straight through or turning left, the car on its right 
(if any) is not driving either straight, left or right, and the opposing car 
(if any) is not turning left. 

These rules are complex but deadlock bee, which as been confirmed 
(for specific scenarios) by exhaustive search using JPF on initial event 
scheduling orders. By comparison, deadlocks caused by the naive policy 
of seizing all of SE, NE, and W f o r  a northbound car making a left turn 
(and correspondingly for cars heading in other directions) were quickly 
located by JPF. 

Car speed is governed by car priority, in the following manner. The 
time required by a car to transit a sector is t = 100 sec/p, where p is the 
car’s priority. At the extremes, p = 1 yields a sector transit time of 100 
seconds, and p = 8 yields 12.5 seconds. Experiments were run using four 
resource types for sectors: FIFO, priorit.y, pri0rit.y ceiling 8 ,  and priority 
inheritance. There are ready intuitions for each of these cases: FIFO is 
round robin, priority is fastest vehicle first, priority ceiling is a minimum 
sector speed, and priority inheritance is when one sees an ambulance 



Sector type 
FIFO 
Priority 
PC(8) 
PI 

Fig. 4. Intersection results using four sector resource types. (5/N/S) indicates that Car 
0 has priority 5, is heading north, and going straight, etc. Car 0 and Car 1 start at  
time 0; Car 2 has a start delay of 5 seconds. The figures in each column are completion 
time in seconds, and percentage wait time. 

Car 0 (5/N/S) Car 1 (2/S/L) Car 2 (8/E/L) 
33 10% 183 1 18% 49 / 21% 
33 1 0 %  183 1 18% 49 1 21% 
25 1 0% 63 / 40% 45 115% 
30 1 0 %  180 1 16% 46 1 17% 

rapidly approaching, and speeds up accordingly. The preemption case is 
physically impossible! 

Sample results are shown in Fig. 4. Note that all cars benefit from 
higher priority under priority ceiling, and marginally so under priority 
inheritance. 

The utility of run time cost logging under JPF was demonstrated 
by giving each car a maximum lifetime (its release deadline in RTSJ’s 
vocabulary). If the deadline is set uniformly at 75 seconds, under priority 
inheritance the RTSJ miss handler for Car 1 is invoked, but not for Cars 
0 or Car 2. 

The above analysis can be accomplished under both native Java and 
JPF ,  since it is based solely on simulated time. By contrast, analysis of 
miss handler behavior in RTSJ programs can only be exercised under 
JPF ,  where a listener method in our control program records each byte 
code execution in the subject program. To demonstrate this capability, 
an onboard computer was postulated for each car (its autonomous con- 
troller), and a cycle soaker method was invoked during passage through 
each sector (arbitrarily set at 100,000 double divides, with 100 nanosec- 
ond cost per byte code; a total of 1,400,024 DDIV’s are observed in the 
deterministic case). If a cost limit of 350 milliseconds is imposed, under 
priority inheritance Car 0 terminates without handler invocation, Car 2 
terminates with cost overrun handler invocation, and Car 1 terminates 
with both handlers invoked. 

7 Critique of JPF 

This application breaks new ground for JAVA PATHFINDER in its focus 
on quantified time as a program correctness issue. Much as been learned 
about its flexibility in supporting this new and unanticipated correctness 



dimension, as well as the limits of our approach that implements RTSJ 
without making any modifications to JPF. 

7.1 

In $4 we indicated two areas pose more difficult challenges, which we 
believe can only be implemented by JVM modification: 

Features Not Easily Implemented Under This Approach 

- ScopedMemoryArea’s and NoHeapReaItimeThread’s, which deal with 
non garbage collected MemoryArea’s, and 

- Asynchronous transfers of control (ATC), e g ,  threads that implement 
the Interruptible interface and methods that throw Asynchronouslyln- 
terrupted Exception. 

While it may be possible in principle to implement at least the first 
these features using per-bytecode analysis in a JPF listener method, the 
overhead of this approach is likely to be prohibitive. 

7.2 Opportunities For Application of Other JPF Features 

This project thus far has used only basic JAVA PATHFINDER features. 
Several advanced features of J P F  offer attractive opportunities for in- 
creased utility in verifying RTSJ programs. 

Heuristic search: The default program path exploration strategy is 
depth first search, using backtracking. Other strategies, such as bounded 
breadth-first search, can selectively search longer paths due to elimination 
of the backtrack stack [GV04]. Several criteria for preferring paths in 
RTSJ programs with higher error potential are evident, such as favoring 
states with threads whose extrapolated completion time is beyond their 
stipulated deadlines. 

State abstraction: By default JPF saves all previously encountered 
program states and performs precise equality checks to detect re-encountered 
states. This policy has several consequences, including (i) significant space 
overhead, and (ii) inability to  recognize states that insignificantly vary 
from previously seen states. In particular, the extremely fine represen- 
tation of time in RTSJ (to nanosecond precision), exacerbates (ii). To 
illustrate, consider state abstraction methods focusing on the core data 
structure of our system, the scheduled event list. Opportunities for ab- 
straction here include fuzz on scheduled event times, e.g., equality to res- 
olution of say 100 nanoseconds, or even ignoring ev&t times altogether, 
and considering two event lists to be equal if they reference the same real 



time threads positioned at the same execution point (say, method and 
byte code address). 

Symbolic execution: JPF interfaces to a constraint system that can 
solve equations involving linear inequalities [SKV03]. This presents the 
possibility of asserting constraints on scheduled event times. 

- For example, it could be asserted that event el should run at time 
to + t ( e 2 ) ,  where t ( e )  is the scheduled time of an event e ,  and t ( e2 )  is 
not yet known, i.e., is symbolic. When t ( e 2 )  becomes bound, el would 
be scheduled at a concrete time. 

- Now suppose two scheduled events el and e2 have symbolic event 
times t(e1) and t(e2), and the event list is otherwise empty. We then 
have two options to pursue nondeterministically: (a) el runs next, 
t (e1)  5 t ( e2 )  is asserted, and the simulation clock is set (symbolically) 
to t ( e l ) ,  or (b) symmetrically, e2 runs next, t ( e 2 )  5 t ( e1 )  is asserted, 
and the simulation clock is set to t (e2) .  

Fault driven automatic test case generation: The execution driven 
symbolic constraint refinement technique just sketched can be the basis 
for finding necessary and sufficient conditions that lead to specific faults 
[VPK04]. For example, suppose the real time code is modeling the per- 
formance of an aircraft pre-landing checklist. There have been published 
accident scenarios where a mandatory aircraft response, e.g., completion 
of landing gear deployment, did not occur in time to ensure the safety 
of the next step in the checklist, and the pilot under time pressure (the 
ground is approaching) inappropriately proceeded [Deg04]. Conditions re- 
vealing such flaws in real time checklist procedures might be determined 
by symbolic execution in this manner. 

8 Performance 

We now present performance figures for our RTSJ profile implementation 
in JPF. All performance figures are taken from executions in the Eclipse 
Java IDE with a heap size of one gigabyte on a Pentium 2 laptop with 
768MB of RAM. 

Our system can be run in five modes: native Java with deterministic 
or pseudo random choice selection, or JPF with deterministic, pseudo 
random, or nondeterministic choice selection. We have tested our system 
in all five modes on the applications presented in $6. Run time figures for . 

the multiprocessing operating system example in f j  6.1 under determinis- 
tic mode are 120ms for native Java vs. 6,257ms under JPF (the pseudo 



random mode numbers are analogous). These absolute numbers are not 
important; instead, their relative magnitudes are more informative. Two 
observations emerge: (a) the native Java implementation is quite fast, 
and (b) the JPF implementation is slower by a factor of about 50 - but 
it must be remembered that under JPF an interpretive JVM (written 
in Java) is being employed, cost logging presents a linear execution time 
overhead, and state saving is performed to support exploration of alter- 
native execution paths (not exploited in the deterministic and pseudo 
random cases). 

[ CPU type lRun time] 

Priority 80.9 sec 
91.6 sec 
99.6 sec 

Fig. 5 .  Run times for the multiprogramming example under JPF nondeterministic 
search (backtracking over 24 paths). 

To illustrate the cost of JPF state exploration, the CPU example was 
run under nondeterminism, exploring the 4! = 24 choices for activation 
order at time zero for the four jobs discussed in 5 6.1 Results are shown 
in Fig. 5. 

9 Related Work 

Model checking of timed automata representations has become very popu- 
lar (see [BY041 for a good overview) for the analysis of real time systems. 
Our approach differs in that it uses a model checker to analyze RTSJ 
programs (a richer notation), but we only check safety properties (e.g., 
classic Java errors such as uncaught exceptions and assertion violations 
as well as RTSJ properties such as priority inversion). 

It has been reported that more than 3000 people have used the RTSJ 
reference implementation or a commercial RTSJ-compliant JVM to create 
application prototypes  LOCO^]. Tools are available to benchmark RTSJ 
implementations lCSO21. 

Model checking is a vigorously evolving research area. Examples of 
model checking applied to Java programs are Bandera [Ban], Bogor [DHHR05], 
and the work of Bart Jacobs et al. on JavaCard verification [JMR04]. A 



closely related area is run time verification of Java systems [KKLSOl]. 
Capability for dealing with time in model checkers has also been evolv- 
ing rapidly, often through monitoring of event sequences with respect to 
assertions in linear time logic (LTL) [Hav]. RTSJ itself is drawing critical 
and insightful analysis, such as the work on Ravenscar [Bur,Wel04]. 

10 Status and Continuing Work 

Our implementation of RTSJ within a DSS environment is operational. 
RTSJ features supported include RealtimeThread’s, AsyncEvent’s and AsyncEven- 
tHandler’s, cost overrun handlers, binding of external happenings to events, 
simulated and real time Clock’s, and various timers, e.g., OneShotTimer 
and PeriodicTimer, and PhysicalMemoryArea’s. API documentation includ- 
ing designation of individual classes and methods not implemented is 
publicly available [Lin]. 

Continuing work includes: 

1. Maximizing the RTSJ profile we can implement without JVM modi- 
fication, 

2. Development of a more realistic, calibrated execution cost model, tak- 
ing into account effects of garbage collection, JIT compilation, class 
loading, etc., 

3. Development of more challenging test cases, with assessment of the 
scalability of RTSJ under JPF, 

4. Extending JPF’s JVM (written Java) to include the remaining crucial 
RTSJ features summarized in 7.1 (probably using Ravenscar’s profile 
as a guide), and 

5. Exploiting advanced JPF features to increase the scale of RTSJ sys- 
tems that can be analyzed, through techniques such as search heuris- 
tics, state abstraction and symbolic constraint analysis [PPVO5] as 
discussed in § 7.2. 
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